Title of article :
Edge covering pseudo-outerplanar graphs with forests
Author/Authors :
Zhang، نويسنده , , Xin and Liu، نويسنده , , Guizhen and Wu، نويسنده , , Jian-Liang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
12
From page :
2788
To page :
2799
Abstract :
A graph is pseudo-outerplanar if each block has an embedding on the plane in such a way that the vertices lie on a fixed circle and the edges lie inside the disk of this circle with each of them crossing at most one another. In this paper, we prove that each pseudo-outerplanar graph admits edge decompositions into a linear forest and an outerplanar graph, or a star forest and an outerplanar graph, or two forests and a matching, or max { Δ ( G ) , 4 } matchings, or max { ⌈ Δ ( G ) / 2 ⌉ , 3 } linear forests. These results generalize known results on outerplanar graphs and K 2 , 3 -minor-free graphs, since the class of pseudo-outerplanar graphs is larger than the class of K 2 , 3 -minor-free graphs.
Keywords :
Pseudo-outerplanar graphs , edge decomposition , Linear arboricity , Edge chromatic number
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1600091
Link To Document :
بازگشت