Title of article :
Proof of two conjectures of Petkovšek and Wilf on Gessel walks
Author/Authors :
Sun، نويسنده , , Ping، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
7
From page :
3649
To page :
3655
Abstract :
Let F ( m ; n 1 , n 2 ) be the number of Gessel walks with exactly m steps ending at the point ( n 1 , n 2 ) . In this paper a probabilistic model of Gessel walks is established and F ( m ; n 1 , n 2 ) is shown to be the number of pairs of non-crossing Dyck paths and free Dyck paths. Two formulas for F ( 2 n + 2 k ; 0 , n ) and F ( n + 2 k ; n , 0 ) conjectured by Petkovšek and Wilf are proved.
Keywords :
Lattice path , Gessel walk , Dyck path , random walk
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1600183
Link To Document :
بازگشت