Title of article :
Group colorability of multigraphs
Author/Authors :
Li، نويسنده , , Hao and Lai، نويسنده , , Hong-Jian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
4
From page :
101
To page :
104
Abstract :
Let G be a multigraph with a fixed orientation D and let Γ be a group. Let F ( G , Γ ) denote the set of all functions f : E ( G ) → Γ . A multigraph G is Γ -colorable if and only if for every f ∈ F ( G , Γ ) , there exists a Γ -coloring c : V ( G ) → Γ such that for every e = u v ∈ E ( G ) (assumed to be directed from u to v ), c ( u ) c ( v ) − 1 ≠ f ( e ) . We define the group chromatic number χ g ( G ) to be the minimum integer m such that G is Γ -colorable for any group Γ of order ≥ m under the orientation D . In this paper, we investigate the properties of χ g for multigraphs and prove an analogue to Brooks’ Theorem.
Keywords :
Multigraph , Upper bound , Group coloring
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600196
Link To Document :
بازگشت