Title of article :
Asymptotic enumeration of non-crossing partitions on surfaces
Author/Authors :
Rué، نويسنده , , Juanjo and Sau، نويسنده , , Ignasi and Thilikos، نويسنده , , Dimitrios M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
15
From page :
635
To page :
649
Abstract :
We generalize the notion of non-crossing partition on a disk to general surfaces with boundary. For this, we consider a surface Σ and introduce the number C Σ ( n ) of non-crossing partitions of a set of n points lying on the boundary of Σ . Our main result is an asymptotic estimate for C Σ ( n ) . The proofs use bijective techniques arising from map enumeration, joint with the symbolic method and singularity analysis on generating functions. An outcome of our results is that the exponential growth of C Σ ( n ) is the same as the one of the n -th Catalan number, i.e., does not change when we move from the case where Σ is a disk to general surfaces with boundary.
Keywords :
Analytic combinatorics , Symbolic method , Map enumeration , Bijective techniques
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600252
Link To Document :
بازگشت