Title of article :
On small subgraphs in a random intersection digraph
Author/Authors :
Kurauskas، نويسنده , , Valentas Gaidelis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
14
From page :
872
To page :
885
Abstract :
Given a set of vertices V and a set of attributes W let each vertex v ∈ V include an attribute w ∈ W into a set S − ( v ) with probability p − and let it include w into a set S + ( v ) with probability p + independently for each w ∈ W . The random binomial intersection digraph on the vertex set V is defined as follows: for each u , v ∈ V the arc u v is present if S − ( u ) and S + ( v ) are not disjoint. For any h = 2 , 3 , … we determine the birth threshold of the complete digraph on h vertices and describe the configurations of intersecting sets that realise the threshold.
Keywords :
Digraph , clique , Threshold , Random intersection graph
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600281
Link To Document :
بازگشت