Title of article :
On the non-existence of tight Gaussian 6-designs on two concentric spheres
Author/Authors :
Hou، نويسنده , , Bo and Shen، نويسنده , , Panpan and Zhang، نويسنده , , Ran and Gao، نويسنده , , Suogang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
A Gaussian t -design is defined as a finite set X in the Euclidean space R n satisfying the condition: 1 V ( R n ) ∫ R n f ( x ) e − α 2 ‖ x ‖ 2 d x = ∑ x ∈ X ω ( x ) f ( x ) for any polynomial f ( x ) in n variables of degree at most t , where α is a constant real number and ω is a positive weight function on X . It is well known that if X is a Gaussian 2 e -design in R n , then | X | ≥ n + e e . We call X a tight Gaussian 2 e -design in R n if | X | = n + e e . In this paper, we prove that there exists no tight Gaussian 6-design supported by two concentric spheres in R n for n ≥ 2 .
Keywords :
Gaussian t -designs , Euclidean t -designs , Spherical t -designs
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics