Title of article :
Group divisible designs with two associate classes, and quadratic leaves of triple systems
Author/Authors :
Chaffee، نويسنده , , Joe and Rodger، نويسنده , , C.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
11
From page :
2104
To page :
2114
Abstract :
In this paper, we consider group divisible designs with two associate classes, completely settling the existence problem for K 3 -designs of λ 1 K n ∨ λ 2 λ 1 K m when m = 2 and when λ 1 ≥ λ 2 . We also extend a classic result of Colbourn and Rosa on quadratic leaves, finding necessary and sufficient conditions for the existence of a K 3 -decomposition of λ K n − E ( Q ) , where Q is any 2-regular subgraph of K n .
Keywords :
triple systems , Group divisible designs , Two associate classes , Quadratic leaves
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600433
Link To Document :
بازگشت