Title of article :
A Kruskal–Katona type theorem for integer partitions
Author/Authors :
Ku، نويسنده , , Cheng Yeaw and Wong، نويسنده , , Kok Bin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
8
From page :
2239
To page :
2246
Abstract :
Let N be the set of positive integers, and let P ( n ) = ⋃ 1 ≤ l ≤ n { ( x 1 , … , x l ) ∈ N l : x 1 + ⋯ + x l = n } be the set of (ordered) partitions of n . We show that there exist a rank function and orderings ≤ c and ≺ such that the ranked poset ( P ( n ) , ≤ c , ≺ ) is Macaulay.
Keywords :
Kruskal–Katona theorem , Macaulay posets
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600451
Link To Document :
بازگشت