Title of article :
Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11
Author/Authors :
Borodin، نويسنده , , O.V. and Ivanova، نويسنده , , A.O. and Kostochka، نويسنده , , A.V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
128
To page :
134
Abstract :
Let φ P ( C 6 ) (respectively, φ T ( C 6 ) ) be the minimum integer k with the property that every 3-polytope (respectively, every plane triangulation) with minimum degree 5 has a 6-cycle with all vertices of degree at most k . In 1999, S. Jendrol’ and T. Madaras proved that 10 ≤ φ T ( C 6 ) ≤ 11 . It is also known, due to B. Mohar, R. Škrekovski and H.-J. Voss (2003), that φ P ( C 6 ) ≤ 107 . ve that φ P ( C 6 ) = φ T ( C 6 ) = 11 .
Keywords :
Structure properties , 3-polytope , Weight , Planar graph , Plane map
Journal title :
Discrete Mathematics
Serial Year :
2014
Journal title :
Discrete Mathematics
Record number :
1600557
Link To Document :
بازگشت