Title of article :
Permutation polynomials over finite fields involving
Author/Authors :
Fernando، نويسنده , , Neranga and Hou، نويسنده , , Xiang-dong and Lappano، نويسنده , , Stephen D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
Let p be a prime and q = p s . For integer a ≥ 0 , let S a = x + x q + ⋯ + x q a − 1 ∈ F p [ x ] . We present three constructions of permutation polynomials of F q e involving S a which generalize several recent results. When q is even, the third construction produces a large class of Dembowski–Ostrom permutation polynomials. We also discuss an interesting linear algebraic problem arising from the third construction.
Keywords :
finite field , Rank , Dembowski–Ostrom polynomial , Permutation polynomial
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics