Title of article :
Solving multivariate functional equations
Author/Authors :
Chon، نويسنده , , Michael and Hanusa، نويسنده , , Christopher R.H. and Lee، نويسنده , , Amy، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
This paper presents a new method to solve functional equations of multivariate generating functions, such as F ( r , s ) = e ( r , s ) + x f ( r , s ) F ( 1 , 1 ) + x g ( r , s ) F ( q r , 1 ) + x h ( r , s ) F ( q r , q s ) , giving a formula for F ( r , s ) in terms of a sum over finite sequences. We use this method to show how one would calculate the coefficients of the generating function for parallelogram polyominoes, which is impractical using other methods. We also apply this method to answer a question from fully commutative affine permutations.
Keywords :
Fully commutative , Affine permutation , Combinatorial statistic , Staircase polyomino , Parallelogram polyomino , Functional recurrence , Functional equation
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics