Title of article :
The Dyck pattern poset
Author/Authors :
Bacher، نويسنده , , Axel and Bernini، نويسنده , , Antonio and Ferrari، نويسنده , , Luca and Gunby، نويسنده , , Benjamin and Pinzani، نويسنده , , Renzo and West، نويسنده , , Julian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
12
From page :
12
To page :
23
Abstract :
We introduce the notion of pattern in the context of lattice paths, and investigate it in the specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set of all Dyck paths, which we call the Dyck pattern poset. Given a Dyck path P , we determine a formula for the number of Dyck paths covered by P , as well as for the number of Dyck paths covering P . We then address some typical pattern-avoidance issues, enumerating some classes of pattern-avoiding Dyck paths. We also compute the generating function of Dyck paths avoiding any single pattern in a recursive fashion, from which we deduce the exact enumeration of such a class of paths. Finally, we describe the asymptotic behavior of the sequence counting Dyck paths avoiding a generic pattern, we prove that the Dyck pattern poset is a well-ordering and we propose a list of open problems.
Keywords :
Dyck path , exact enumeration , Pattern , Asymptotic , POSET
Journal title :
Discrete Mathematics
Serial Year :
2014
Journal title :
Discrete Mathematics
Record number :
1600600
Link To Document :
بازگشت