Title of article :
Extremal words in morphic subshifts
Author/Authors :
Currie، نويسنده , , James D. and Rampersad، نويسنده , , Narad and Saari، نويسنده , , Kalle and Zamboni، نويسنده , , Luca Q. Zamboni، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
Given an infinite word x over an alphabet A , a letter b occurring in x , and a total order σ on A , we call the smallest word with respect to σ starting with b in the shift orbit closure of x an extremal word of x . In this paper we consider the extremal words of morphic words. If x = g ( f ω ( a ) ) for some morphisms f and g , we give two simple conditions on f and g that guarantee that all extremal words are morphic. This happens, in particular, when x is a primitive morphic or a binary pure morphic word. Our techniques provide characterizations of the extremal words of the period-doubling word and the Chacon word and a new proof of the form of the lexicographically least word in the shift orbit closure of the Rudin–Shapiro word.
Keywords :
Lexicographic order , Morphic word , Extremal word , Period-doubling word , Chacon word , Rudin–Shapiro word , Primitive morphic word
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics