Title of article :
A characterization of hypergraphs that achieve equality in the Chvátal–McDiarmid Theorem
Author/Authors :
Henning، نويسنده , , Michael A. and Lِwenstein، نويسنده , , Christian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
69
To page :
75
Abstract :
For k ≥ 2 , let H be a k -uniform hypergraph on n vertices and m edges. The transversal number τ ( H ) of H is the minimum number of vertices that intersect every edge. Chvátal and McDiarmid (1992) proved that τ ( H ) ≤ ( n + ⌊ k 2 ⌋ m ) / ( ⌊ 3 k 2 ⌋ ) . When k = 3 , the connected hypergraphs that achieve equality in the Chvátal–McDiarmid Theorem were characterized by Henning and Yeo (2008). In this paper, we characterize the connected hypergraphs that achieve equality in the Chvátal–McDiarmid Theorem for k = 2 and for all k ≥ 4 .
Keywords :
Hypergraph , Edge coloring , Multigraph , Matchings , Transversal
Journal title :
Discrete Mathematics
Serial Year :
2014
Journal title :
Discrete Mathematics
Record number :
1600628
Link To Document :
بازگشت