Title of article :
Counting edge-Kempe-equivalence classes for 3-edge-colored cubic graphs
Author/Authors :
belcastro، نويسنده , , sarah-marie and Haas، نويسنده , , Ruth، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
8
From page :
77
To page :
84
Abstract :
Two n -edge colorings of a graph are edge-Kempe equivalent if one can be obtained from the other by a series of edge-Kempe switches. In this work we show every planar bipartite cubic graph has exactly one edge-Kempe equivalence class, when 3 = χ ′ ( G ) colors are used. In contrast, we also exhibit infinite families of nonplanar bipartite cubic (and thus 3-edge colorable) graphs with a range of numbers of edge-Kempe equivalence classes when using 3 colors. These results address a question raised by Mohar.
Keywords :
Kempe chains , cubic graphs , Coloring Graphs , Edge-coloring
Journal title :
Discrete Mathematics
Serial Year :
2014
Journal title :
Discrete Mathematics
Record number :
1600653
Link To Document :
بازگشت