Title of article :
Rainbow matchings and cycle-free partial transversals of Latin squares
Author/Authors :
Gyلrfلs، نويسنده , , Andrلs and Sلrkِzy، نويسنده , , Gلbor N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
96
To page :
102
Abstract :
In this paper we show that properly edge-colored graphs G with | V ( G ) | ≥ 4 δ ( G ) − 3 have rainbow matchings of size δ ( G ) ; this gives the best known bound for a recent question of Wang. We also show that properly edge-colored graphs G with | V ( G ) | ≥ 2 δ ( G ) have rainbow matchings of size at least δ ( G ) − 2 δ ( G ) 2 / 3 . This result extends (with a weaker error term) the well-known result that a factorization of the complete bipartite graph K n , n has a rainbow matching of size n − o ( n ) , or equivalently that every Latin square of order n has a partial transversal of size n − o ( n ) (an asymptotic version of the Ryser–Brualdi conjecture). In this direction we also show that every Latin square of order n has a cycle-free partial transversal of size n − o ( n ) .
Keywords :
Proper edge colorings , Rainbow Matchings , Partial transversals in Latin squares
Journal title :
Discrete Mathematics
Serial Year :
2014
Journal title :
Discrete Mathematics
Record number :
1600674
Link To Document :
بازگشت