Title of article :
Bipartite distance-regular graphs: The -polynomial property and pseudo primitive idempotents
Author/Authors :
Lang، نويسنده , , Michael S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
9
From page :
27
To page :
35
Abstract :
Let Γ denote a bipartite distance-regular graph with diameter at least 4 and valency at least 3. Fix a vertex of Γ and let T denote the corresponding Terwilliger algebra. Suppose that Γ is Q -polynomial and there are two non-isomorphic irreducible T -modules with endpoint 2. We show that, unless the intersection numbers of Γ fit one exceptional case (which is not known to correspond to an actual graph), the entry-wise product of pseudo primitive idempotents associated with these modules is a linear combination of two pseudo primitive idempotents. This result relates to a conjecture of MacLean and Terwilliger.
Keywords :
Distance-regular graph , Pseudo primitive idempotent , Association scheme , Terwilliger algebra , Subconstituent algebra
Journal title :
Discrete Mathematics
Serial Year :
2014
Journal title :
Discrete Mathematics
Record number :
1600713
Link To Document :
بازگشت