Title of article :
On the difference between the revised Szeged index and the Wiener index
Author/Authors :
Klav?ar، نويسنده , , Sandi and Nadjafi-Arani، نويسنده , , M.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
28
To page :
34
Abstract :
Let S z ⋆ ( G ) and W ( G ) be the revised Szeged index and the Wiener index of a graph G . Chen et al. (2014) proved that if G is a non-bipartite connected graph of order n ≥ 4 , then S z ⋆ ( G ) − W ( G ) ≥ ( n 2 + 4 n − 6 ) / 4 . Using a matrix method we prove that if G is a non-bipartite graph of order n , size m , and girth g , then S z ⋆ ( G ) − W ( G ) ≥ n ( m − 3 n 4 ) + P ( g ) , where P is a fixed cubic polynomial. Graphs that attain the equality are also described. If in addition g ≥ 5 , then S z ⋆ ( G ) − W ( G ) ≥ n ( m − 3 n 4 ) + ( n − g ) ( g − 3 ) + P ( g ) . These results extend the bound of Chen, Li, and Liu as soon as m ≥ n + 1 or g ≥ 5 . The remaining cases are treated separately.
Keywords :
Szeged index , revised Szeged index , Wiener index , Isometric cycle
Journal title :
Discrete Mathematics
Serial Year :
2014
Journal title :
Discrete Mathematics
Record number :
1600743
Link To Document :
بازگشت