Title of article :
Inhibition of mitochondrial respiration by phosphoenolpyruvate
Author/Authors :
Nathan Baily، نويسنده , , C. and Cason، نويسنده , , Roger W. and Vadvalkar، نويسنده , , Shraddha S. and Matsuzaki، نويسنده , , Satoshi and Humphries، نويسنده , , Kenneth M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
68
To page :
74
Abstract :
The cytosolic factors that influence mitochondrial oxidative phosphorylation rates are relatively unknown. In this report, we examine the effects of phosphoenolpyruvate (PEP), a glycolytic intermediate, on mitochondrial function. It is reported here that in rat heart mitochondria, PEP delays the onset of state 3 respiration in mitochondria supplied with either NADH-linked substrates or succinate. However, the maximal rate of state 3 respiration is only inhibited when oxidative phosphorylation is supported by NADH-linked substrates. The capacity of PEP to delay and/or inhibit state 3 respiration is dependent upon the presence or absence of ATP. Inhibition of state 3 is exacerbated in uncoupled mitochondria, with a 40% decrease in respiration seen with 0.1 mM PEP. In contrast, ATP added exogenously or produced by oxidative phosphorylation completely prevents PEP-mediated inhibition. Mechanistically, the results support the conclusion that the main effects of PEP are to impede ADP uptake and inhibit NADH oxidation. By altering the NADH/NAD+ status of mitochondria, it is demonstrated that PEP enhances succinate dehydrogenase activity and increase free radical production. The results of this study indicate PEP may be an important modulator of mitochondrial function under conditions of decreased ATP.
Keywords :
Free radicals , Cardiac mitochondria , oxidative phosphorylation , phosphoenolpyruvate
Journal title :
Archives of Biochemistry and Biophysics
Serial Year :
2011
Journal title :
Archives of Biochemistry and Biophysics
Record number :
1603431
Link To Document :
بازگشت