Title of article :
Quantum chemical modeling for 157 nm photolithography
Author/Authors :
Waterland، نويسنده , , Robert L and Dobbs، نويسنده , , Kerwin D and Rinehart، نويسنده , , Amy M and Feiring، نويسنده , , Andrew E and Wheland، نويسنده , , Robert C and Smart، نويسنده , , Bruce E، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
In its continuing quest for smaller length scales, the electronics industry plans to introduce 157 nm as the next lithographic wavelength. Accordingly, there is a pressing need to develop photoresists that are more transparent, and pellicles that are both more transparent and more durable. With the advent and popularization of time-dependent density functional theory (TD-DFT), we now have a practical quantum chemical method for calculating excitation energies and transition moments in the vacuum ultraviolet (VUV) which can greatly assist in the scouting of highly transparent materials. We have performed TD-DFT calculations for a broad variety of fluorinated molecules and we will report calculated VUV photoabsorption spectra for a large family of model fluorohexanes. These calculations, which span a range from 1-fluorohexane to CH3CF2CF2CF2CF2CH3, illustrate some of the principles one may use to design low absorption polymeric materials.
Keywords :
Fluorohexane , quantum chemistry , VUV , Vacuum ultraviolet , 157 nm , TD-DFT , photoresist
Journal title :
Journal of Fluorine Chemistry
Journal title :
Journal of Fluorine Chemistry