Title of article :
Introduction of Histidine Analogs Leads to Enhanced Proton Transfer in Carbonic Anhydrase V
Author/Authors :
T. S. Earnhardt، نويسنده , , J.Nicole and Wright، نويسنده , , S.Kirk and Qian، نويسنده , , Minzhang and Tu، نويسنده , , Chingkuang and Laipis، نويسنده , , Philip J. and Viola، نويسنده , , Ronald E. and Silverman، نويسنده , , David N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
The rate-limiting step in the catalysis of the hydration of CO2by carbonic anhydrase involves transfer of protons between zinc-bound water and solution. This proton transfer can be enhanced by proton shuttle residues within the active-site cavity of the enzyme. We have used chemical modulation to provide novel internal proton transfer groups that enhance catalysis by murine carbonic anhydrase V (mCA V). This approach involves the site-directed mutation of a targeted residue to a cysteine which is then subsequently reacted with an imidazole analog containing an appropriately positioned leaving group. Compounds examined include 4-bromoethylimidazole (4-BEI), 2-chloromethylimidazole (2-CMI), 4-chloromethylimidazole (4-CMI), and a triazole analog. Two sites in mCA V, Lys 91 and Tyr 131, located on the rim of the active-site cavity have been targeted for the introduction of these imidazole analogs. Modification of the introduced Cys 131 with 4-BEI and 4-CMI resulted in enhancements of up to threefold in catalytic activity. The pH profiles indicate the presence of a new proton shuttle residue of pKanear 5.8, consistent with the introduction of a functional proton transfer group into the active site. This is the first example of incorporation by chemical modification of an unnatural amino acid analog of histidine that can act as a proton shuttle in an enzyme.
Keywords :
proton transfer , carbonic anhydrase , unnatural amino acid , Carbon dioxide , Chemical modification
Journal title :
Archives of Biochemistry and Biophysics
Journal title :
Archives of Biochemistry and Biophysics