Title of article :
The role of Ag(I) ions in the electronic spectroscopy of adenine–cytosine mispairs: A MS-CASPT2 theoretical study
Author/Authors :
Schreiber، نويسنده , , Marko and Gonzلlez، نويسنده , , Leticia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
Adenine–cytosine (AC) mispairs have been theoretically studied with MS-CASPT2//CASSCF methods in the presence and absence of Ag ions. The electronically excited states of the most stable AC mispair in the reverse-Wobble (RW) conformation have been compared with those of different Ag(I)–AC complexes, including (i) metalated RW conformations, and (ii) the most stable structures in gas phase which contain the Ag ion bridging A and C. The spectra of these complexes are characterized by charge-transfer (CT) and strong locally excited (LE) states. The metal-to-metal, metal-to-ligand, and Rydberg transitions are very weak in comparison to the nucleobase transitions. Attending to the LE and CT states, and except for the shifts induced by the presence of the Ag, the electronic spectrum of metalated AC mispairs resembles the one of the RW, showing two intense LE bands around 4.5 and 5.5 eV, corresponding to transitions within the adenine and cytosine π-system, respectively. Additionally TD-DFT results obtained with the B3LYP functional are compared with MS-CASPT2//CASSCF calculations. The results clearly evidence the weakness of TD-DFT to describe long range exchange interactions leading to strongly underestimated CT states.
Keywords :
DNA , adenine , Cytosine , excited states , CASPT2 , TD-DFT , silver
Journal title :
Journal of Photochemistry and Photobiology:A:Chemistry
Journal title :
Journal of Photochemistry and Photobiology:A:Chemistry