Title of article :
Effect of high molecular weight plasticizers on the gelatinization of starch under static and shear conditions
Author/Authors :
Taghizadeh، نويسنده , , Ata and Favis، نويسنده , , Basil D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols.
logical technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains virtually unchanged as compared to static conditions. By comparing glycerol, diglycerol and sorbitol data, it is shown that the molecular weight or structure did not qualitatively affect the changes shear imposed on dynamic gelatinization. Shear had a relatively more pronounced effect on diglycerol as the plasticizer with less hydrogen bonding ability.
Keywords :
Thermoplastic starch , Dynamic rheological properties , Wheat starch , shear , Gelatinization
Journal title :
CARBOHYDRATE POLYMERS
Journal title :
CARBOHYDRATE POLYMERS