Title of article :
A sequential model for disaggregating near-surface soil moisture observations using multi-resolution thermal sensors
Author/Authors :
Merlin، نويسنده , , Olivier and Al Bitar، نويسنده , , Ahmad and Walker، نويسنده , , Jeffrey P. and Kerr، نويسنده , , Yann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
2275
To page :
2284
Abstract :
A sequential model is developed to disaggregate microwave-derived soil moisture from 40 km to 4 km resolution using MODIS (Moderate Imaging Spectroradiometer) data and subsequently from 4 km to 500 m resolution using ASTER (Advanced Scanning Thermal Emission and Reflection Radiometer) data. The 1 km resolution airborne data collected during the three-week National Airborne Field Experiment 2006 (NAFEʹ06) are used to simulate the 40 km pixels, and a thermal-based disaggregation algorithm is applied using 1 km resolution MODIS and 100 m resolution ASTER data. The downscaled soil moisture data are subsequently evaluated using a combination of airborne and in situ soil moisture measurements. A key step in the procedure is to identify an optimal downscaling resolution in terms of disaggregation accuracy and sub-pixel soil moisture variability. Very consistent optimal downscaling resolutions are obtained for MODIS aboard Terra, MODIS aboard Aqua and ASTER, which are 4 to 5 times the thermal sensor resolution. The root mean square error between the 500 m resolution sequentially disaggregated and ground-measured soil moisture is 0.062 vol./vol. with a bias of − 0.045 vol./vol. and values ranging from 0.08 to 0.40 vol./vol.
Keywords :
ASTER , Disaggregation , Scaling , fractal , Soil moisture , multi-sensor , NAFE , MODIS , SMOS
Journal title :
Remote Sensing of Environment
Serial Year :
2009
Journal title :
Remote Sensing of Environment
Record number :
1629384
Link To Document :
بازگشت