Title of article :
Experimental and finite element analysis of flexural behavior of FRP-strengthened RC beams using cement-based adhesives
Author/Authors :
Hashemi، نويسنده , , S. and Al-Mahaidi، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
The strengthening and rehabilitation of structures are major issues worldwide. In most situations, strengthening is required when there is an increase in the applied load, human error in the initial construction, a legal requirement to comply with updated versions of existing codes, or as a result of the loss of strength due to deterioration over time. Fiber-Reinforced Polymer (FRP) strengthening systems are enjoying a great deal of popularity as a result of the unique properties of FRPs, namely, their light weight, fatigue resistance non-corrosive characteristics and ease of application.
pair and strengthening technique with epoxy-bonded advanced composites has been applied to a large number of bridges around the world. At elevated temperatures, normally beyond the glass transition temperatures of epoxy adhesive, the mechanical properties of the polymer matrix deteriorate rapidly. It will be very beneficial if they can be replaced by cementitious (mineral)-based bonding agents such as modified concrete, in order to produce fire-resistant strengthening systems.
conducted for this paper include the investigation of the flexural behavior of FRP-strengthened reinforced concrete beams using cement-based adhesives. It is concluded that the use of cement-based bonding materials is a promising technique in FRP applications for structures located in hot regions or in danger of fire.
Keywords :
Bonding properties , Rehabilitation , Fire Resistance , Cement-based adhesives , FRP
Journal title :
Construction and Building Materials
Journal title :
Construction and Building Materials