Title of article :
Crystal structure of arginase from Leishmania mexicana and implications for the inhibition of polyamine biosynthesis in parasitic infections
Author/Authors :
D’Antonio، نويسنده , , Edward L. and Ullman، نويسنده , , Buddy and Roberts، نويسنده , , Sigrid C. and Dixit، نويسنده , , Upasna Gaur and Wilson، نويسنده , , Mary E. and Hai، نويسنده , , Yang and Christianson، نويسنده , , David W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
14
From page :
163
To page :
176
Abstract :
Arginase from parasitic protozoa belonging to the genus Leishmania is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme catalyzes the first committed step in the biosynthesis of polyamines that enable cell growth and survival. The high resolution X-ray crystal structures of the unliganded form of Leishmania mexicana arginase (LmARG) and four inhibitor complexes are now reported. These complexes include the reactive substrate analogue 2(S)-amino-6-boronohexanoic acid (ABH) and the hydroxylated substrate analogue nor-Nω-hydroxy-l-arginine (nor-NOHA), which are the most potent arginase inhibitors known to date. Comparisons of the LmARG structure with that of the archetypal arginase, human arginase I, reveal that all residues important for substrate binding and catalysis are strictly conserved. However, three regions of tertiary structure differ between the parasitic enzyme and the human enzyme corresponding to the G62 – S71, L161 – C172, and I219 – V230 segments of LmARG. Additionally, variations are observed in salt link interactions that stabilize trimer assembly in LmARG. We also report biological studies in which we demonstrate that localization of LmARG to the glycosome, a unique subcellular organelle peculiar to Leishmania and related parasites, is essential for robust pathogenesis.
Keywords :
metalloenzyme , arginase , X-ray crystallography , Leishmaniasis
Journal title :
Archives of Biochemistry and Biophysics
Serial Year :
2013
Journal title :
Archives of Biochemistry and Biophysics
Record number :
1633503
Link To Document :
بازگشت