Title of article :
Estimating landscape net ecosystem exchange at high spatial–temporal resolution based on Landsat data, an improved upscaling model framework, and eddy covariance flux measurements
Author/Authors :
Fu، نويسنده , , Dongjie and Chen، نويسنده , , Baozhang and Zhang، نويسنده , , Huifang and Wang، نويسنده , , Juan and Black، نويسنده , , T. Andy and Amiro، نويسنده , , Brian D. and Bohrer، نويسنده , , Gil and Bolstad، نويسنده , , Paul and Coulter، نويسنده , , Richard and Rahman، نويسنده , , Abdullah F. and Dunn، نويسنده , , Allison and McCaughey، نويسنده , , J. Harry and Meyers، نويسنده , , Tilden and Verma، نويسنده , , Shashi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
More accurate estimation of the carbon dioxide flux depends on the improved scientific understanding of the terrestrial carbon cycle. Remote-sensing-based approaches to continental-scale estimation of net ecosystem exchange (NEE) have been developed but coarse spatial resolution is a source of errors. Here we demonstrate a satellite-based method of estimating NEE using Landsat TM/ETM + data and an upscaling framework. The upscaling framework contains flux-footprint climatology modeling, modified regression tree (MRT) analysis and image fusion. By scaling NEE measured at flux towers to landscape and regional scales, this satellite-based method can improve NEE estimation at high spatial-temporal resolution at the landscape scale relative to methods based on MODIS data with coarser spatial–temporal resolution. This method was applied to sixteen flux sites from the Canadian Carbon Program and AmeriFlux networks located in North America, covering forest, grass, and cropland biomes. Compared to a similar method using MODIS data, our estimation is more effective for diagnosing landscape NEE with the same temporal resolution and higher spatial resolution (30 m versus 1 km) (r2 = 0.7548 vs. 0.5868, RMSE = 1.3979 vs. 1.7497 g C m− 2 day− 1, average error = 0.8950 vs. 1.0178 g C m− 2 day− 1, relative error = 0.47 vs. 0.54 for fused Landsat and MODIS imagery, respectively). We also compared the regional NEE estimations using Carbon Tracker, our method and eddy-covariance observations. This study demonstrates that the data-driven satellite-based NEE diagnosed model can be used to upscale eddy-flux observations to landscape scales with high spatial–temporal resolutions.
Keywords :
Net ecosystem exchange , Eddy-covariance , image fusion , Regression tree , Footprint climatology , upscaling
Journal title :
Remote Sensing of Environment
Journal title :
Remote Sensing of Environment