Title of article :
Procedures for vibration serviceability assessment of high-frequency floors
Author/Authors :
Brownjohn، نويسنده , , J.M.W. and Middleton، نويسنده , , C.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
1548
To page :
1559
Abstract :
Manufacturing plants that produce micro-electronic components, and facilities for extreme-precision experimental measurements have strict vertical vibration serviceability requirements due to sub-micron feature size or optical/target dimensions. Failure to meet these criteria may result in extremely costly loss of production or failure of experiments. For such facilities floors are massive but stiff, usually constructed with concrete, generally have first mode natural frequencies above 10 Hz and are typically classed as ‘high-frequency floors’. The process of design to limit in-service vibrations to be within specific or generic vibration criteria is termed ‘vibration control’. l guidance documents for vibration control of high-frequency floors have been published, for different applications. These design guides typically propose simplifications of complex floor systems and use of empirical predictive design formulae. A recently published guide uses a more rigorous approach based on first-principle modal analysis and modeling footfalls as effective impulses, but there remain unresolved issues about its application, and this paper addresses these in order to develop an improved methodology. the significant but conventionally discounted contribution of resonance well above the conventionally accepted boundary between low and high-frequency floors is examined. The level of necessary modeling detail is then considered along with the effect of accounting for adjacent bays in simulation of regular multi-bay floors. Finally, while it is assumed that contributions of higher modes to impulsive response decrease so that a cut-off frequency can be prescribed, simulations demonstrate that with both effective impulse and real footfall forces, there is not necessarily asymptotic response with rising floor mode frequency. nclusion is that there are no shortcuts to predicting response of high-frequency floors to footfall excitation. Simulations must consider resonant response due to high-order harmonics, provide adequate detail in finite element models and adopt a cut-off frequency that depends more on usage than on features of the floor or of the walking.
Keywords :
Floor vibration , assessment , Pedestrian , Serviceability
Journal title :
Engineering Structures
Serial Year :
2008
Journal title :
Engineering Structures
Record number :
1642110
Link To Document :
بازگشت