Title of article :
Temperature effects on resolution in ion mobility spectrometry
Author/Authors :
Tabrizchi، نويسنده , , Mahmoud، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2004
Abstract :
The separation efficiency of ion mobility spectrometry (IMS) may be measured in terms of either resolving power, based on a single-peak definition, or peak-to-peak resolution, based on the separation of pairs of adjacent peaks. Usually resolving power decreases with temperature. However, the experimental results show that the peak-to-peak resolution may be increased in some cases. Negative ion mobility spectra of halide ions are better resolved at elevated temperatures. In addition, the peaks corresponding to protonated monomer of amylacetate and the proton-bound dimer of ethylacetate are well separated at 100 °C while they fully overlap at 18 °C. This paper focuses on the effect of temperature on peak-to-peak resolution. It was also observed that in some cases peak-to-peak resolution decreases with temperature. Examples are the spectra of cyclohexanone and methyl-iso-butyl ketone (MIBK) as well as dimethyl methyl phosphonate (DMMP) and MIBK. The increase or decrease in resolution at elevated temperatures has been attributed to the changes in separation factor (α) which is governed by the different hydration and clustering tendency of ions.
Keywords :
Ion mobility spectrometry , RESOLUTION , Resolving power