Title of article :
Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte
Author/Authors :
Leng، نويسنده , , Yongjun and Chan، نويسنده , , Siew Hwa and Liu، نويسنده , , Qinglin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powder was prepared by glycine–nitrate combustion method. The electrochemical properties of porous LSCF cathodes and LSCF–Gd0.1Ce0.9O1.95 (GDC) composite cathodes were evaluated at intermediate/low temperatures of 500–700 °C. The polarization resistance of pure LSCF cathode sintered at 975 °C for 2 h was 1.20 Ω cm2 at 600 °C. The good performance of pure LSCF cathode is attributed to its unique microstructure—small grain size, high porosity and large surface area. The addition of GDC to LSCF cathode further reduced the polarization resistance. The lowest polarization resistance of 0.17 Ω cm2 was achieved at 600 °C for LSCF–GDC (40:60 wt%) composite cathode. An anode-supported solid oxide fuel cell (SOFC) was prepared using LSCF–GDC (40:60 wt%) composite as cathode, GDC film (49-μm-thick) as electrolyte, and Ni–GDC (65:35 wt%) as anode. The total electrode polarization resistance was 0.27 Ω cm2 at 600 °C, which implies that LSCF–GDC (40:60 wt%) composite cathode used in the anode-supported SOFC had a polarization resistance lower than 0.27 Ω cm2 at 600 °C. The cell generated good performance with the maximum power density of 562, 422, 257 and 139 mW/cm2 at 650, 600, 550 and 500 °C, respectively.
Keywords :
polarization resistance , Composite cathode , Glycine–nitrate combustion , Anode-supported solid oxide fuel cell
Journal title :
International Journal of Hydrogen Energy
Journal title :
International Journal of Hydrogen Energy