Title of article :
Numerical modeling of three-dimensional two-phase gas–liquid flow in the flow field plate of a PEM electrolysis cell
Author/Authors :
Nie، نويسنده , , Jianhu and Chen، نويسنده , , Yitung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
15
From page :
3183
To page :
3197
Abstract :
Numerical simulations were performed for three-dimensional two-phase water/oxygen flow in the flow field plate at the anode side of a PEM electrolysis cell. The mixture model was used to simulate two phases for the purpose of examining flow features in the flow field plate in order to effectively guide the design of electrolysis cells. The water flow rate was maintained as a constant of 260 mL/min, while the flow rate of oxygen generation was assumed to change from 0 to 14 mg/s. The obtained results including the velocity, pressure, and volume fraction distributions are presented and discussed. It is found that the obtained results for single-phase flow cases cannot be linearly extrapolated into the two-phase flow cases. The irregular velocity profile (locally low velocity magnitude near the exit port section) is not observed when the flow rate of oxygen generation is relatively low. As the mass flow rate of oxygen generation increases, reverse flow develops inside the flow channels.
Keywords :
Flow field plate , cfd modeling , Two-phase flow , Hydrogen production
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2010
Journal title :
International Journal of Hydrogen Energy
Record number :
1660047
Link To Document :
بازگشت