Title of article :
Analysis of PEM fuel cell experimental data using principal component analysis and multi linear regression
Author/Authors :
Placca، نويسنده , , Latevi and Kouta، نويسنده , , Raed and Candusso، نويسنده , , Denis and Blachot، نويسنده , , Jean-François and Charon، نويسنده , , Willy، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
4582
To page :
4591
Abstract :
Polarisation curves performed at the Fuel Cell System Laboratory (FC LAB) at Belfort on a PEM fuel cell stack using a homemade fully instrumented test bench led to more than 100 variables depending on time. Visualising and analysing all the different test variables are complex. In this work, we show how the Principal Component Analysis (PCA) method helps to explore correlations between variables and similarities between measurements at a specific sampling time (individuals). To complete this method, an empirical model of the PEM fuel cell is proposed by linking the different input parameters to the cell voltage using Multiple Linear Regression.
Keywords :
Proton exchange membrane (PEM) fuel cell , Principal component analysis (PCA) , multiple linear regression , Statistical analysis
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2010
Journal title :
International Journal of Hydrogen Energy
Record number :
1660605
Link To Document :
بازگشت