Title of article :
Development of a planar μDMFC operating at room temperature
Author/Authors :
D’Urso، نويسنده , , C. and Baglio، نويسنده , , V. and Antonucci، نويسنده , , V. and Aric?، نويسنده , , A.S. and Specchia، نويسنده , , S. and Icardi، نويسنده , , U.A. and Saracco، نويسنده , , G. and Spinella، نويسنده , , C. and D’Arrigo، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
A co-planar micro Direct Methanol Fuel Cell (μDMFC) configuration was designed, developed and tested. The system geometry consisted of anodic and cathodic micro-channels arranged in the same plane. Firstly, micro-channels for a uniform distribution of oxygen and methanol were designed and realized on a polymeric substrate of polycarbonate. Then, the deposition of the catalytic elements inside the micro-channels by a spray-coating technique was carried out. Micro-channels were then covered by a catalyzed membrane containing separate anode and cathode layers. Different cell configurations were built, tested and evaluated. It was observed that the open circuit voltage varied significantly as a function of the membrane humidification degree and distance between anode and cathode channels in this planar design. In the presence of a large distance between the anode and cathode channel, the OCV reached 0.97 V. This high OCV reflected the absence of methanol cross-over due to the specific planar configuration. Regrettably, the overall cell impedance (ohmic and polarization resistance) limited the performance. A maximum power density of 1.3 mW cm−2 (active area) was achieved at room temperature with the smallest distance between anode and cathode (0.25 mm).
Keywords :
direct methanol fuel cells , Planar design , Flow field , Methanol cross-over
Journal title :
International Journal of Hydrogen Energy
Journal title :
International Journal of Hydrogen Energy