Title of article :
Scanning electrochemical microscopy (SECM) study of superoxide generation and its reactivity with 1,4-dihydropyridines
Author/Authors :
Bollo، نويسنده , , S. and Jara-Ulloa، نويسنده , , P. and Finger، نويسنده , , S. and Nٌْez-Vergara، نويسنده , , L.J. and Squella، نويسنده , , J.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
8
From page :
235
To page :
242
Abstract :
A scanning electrochemical microscope (SECM), in the tip generation substrate collection and feedback modes, was used in a method to characterize the electrode mechanism of the O 2 / O 2 - couple in dimethylsulphoxide (DMSO) containing 0.1 M tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte. Also the quantification of the interaction between O 2 - and different 1,4-dihydropyridine compounds is reported. CM results demonstrated that the O 2 / O 2 - couple follows an E mechanism, in contrast with the EC2 mechanism (DISP 2) that was previously reported by cyclic voltammetry. This result implies that in the time scale of SECM measurements there is no time for a homogeneous chemical reaction to be coupled to the electron transfer, i.e., the superoxide is a stable radical. Also we have determined the heterogeneous standard rate constant, k0 of the quasi-reversible reduction of oxygen to superoxide anion. advantage of the fact that the superoxide suffers no chemical decay during the SECM experiment, a method to obtain the direct interaction of different 1,4-dihydropyridine molecules with superoxide was developed. The study revealed that all the 1,4-DHPs scavenged superoxide with sufficiently high interaction constants (∼105 M−1 s−1). No significant difference between the different molecules was found. aper shows that the SECM feedback mode is a sensitive technique, giving an accurate determination of the homogeneous interaction constant and allowing the determination of faster rate constants than those found from cyclic voltammetry.
Keywords :
Superoxide , SECM , 1 , 4-Dihydropyridines
Journal title :
Journal of Electroanalytical Chemistry
Serial Year :
2005
Journal title :
Journal of Electroanalytical Chemistry
Record number :
1671356
Link To Document :
بازگشت