Title of article :
Learning noisy functions via interval models
Author/Authors :
Calafiore، نويسنده , , Giuseppe Carlo، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
10
From page :
404
To page :
413
Abstract :
This paper considers the problem of identification of an interval model for an unknown static function using a finite batch of stochastic input–output data { u ( i ) , y ( i ) } , i = 1 , … , N . The criterion used for identification is that the width of the interval output of the model should be minimized, while containing a given fraction of the observed outputs y ( i ) . We show that, for suitable finite N , the resulting model will be reliable, that is it will explain any other unseen output, up to a given and arbitrary high probability.
Keywords :
Statistical Learning , Set-valued models , Convex optimization , Interval approximation , Identification
Journal title :
Systems and Control Letters
Serial Year :
2010
Journal title :
Systems and Control Letters
Record number :
1675498
Link To Document :
بازگشت