Title of article :
Parameter identification in a probabilistic setting
Author/Authors :
Rosi?، نويسنده , , Bojana V. and Ku?erov?، نويسنده , , Anna and S?kora، نويسنده , , Jan and Pajonk، نويسنده , , Oliver and Litvinenko، نويسنده , , Alexander and Matthies، نويسنده , , Hermann G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The parameters to be identified are described as random variables, the randomness reflecting the uncertainty about the true values, allowing the incorporation of new information through Bayes’s theorem. Such a description has two constituents, the measurable function or random variable, and the probability measure. One group of methods updates the measure, the other group changes the function. We connect both with methods of spectral representation of stochastic problems, and introduce a computational procedure without any sampling which works completely deterministically, and is fast and reliable. Some examples we show have highly nonlinear and non-smooth behaviour and use non-Gaussian measures.
Keywords :
Non-Gaussian Bayesian update , Parameter identification , Linear Bayes , Kalman filter , Polynomial chaos
Journal title :
Engineering Structures
Journal title :
Engineering Structures