Title of article :
The application of a damage detection method using Artificial Neural Network and train-induced vibrations on a simplified railway bridge model
Author/Authors :
Shu، نويسنده , , Jiangpeng and Zhang، نويسنده , , Ziye and Gonzalez، نويسنده , , Ignacio and Karoumi، نويسنده , , Raid، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
14
From page :
408
To page :
421
Abstract :
A damage detection algorithm based on Artificial Neural Network (ANN) was implemented in this study using the statistical properties of structural dynamic responses as input for the ANN. Sensitivity analysis is performed to study the feasibility of using the changes of variances and covariances of the dynamic responses of the structure as input to the ANN. A finite element (FE) model of a one-span simply supported beam railway bridge was developed in ABAQUS®, considering both single damage case and multi-damage case. A Back-Propagation Neural Network (BPNN) was built and trained to perform damage detection. A series of numerical tests on the FE model with different vehicle properties was conducted to prove the validity and efficiency of the proposed approach. The results reveal not only that the ANN, together with the statistics, can correctly estimate the location and severity of damage, but also that the identification of the damage location is more difficult than that of the damage severity. In summary, it is concluded that the use of statistical property of the structural dynamic responses as damage index along with the Artificial Neural Network as tool for damage detection for an idealized model of a bridge is reliable and effective.
Keywords :
Dynamic response , Artificial neural network (ANN) , Damage detection , Railway bridge , Statistical property
Journal title :
Engineering Structures
Serial Year :
2013
Journal title :
Engineering Structures
Record number :
1676101
Link To Document :
بازگشت