Title of article :
Kalman type filter under stationary noises
Author/Authors :
Laurent Brouste، نويسنده , , Alexandre and Kleptsyna، نويسنده , , Marina، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2012
Pages :
6
From page :
1229
To page :
1234
Abstract :
In this paper, we are interested in finding an explicit solution to the filtering problem for a d -dimensional autoregressive signal observed through a linear channel when the noises are stationary Gaussian with the same covariance. We represent the signal–observation pair in terms of a 2 × d -dimensional autoregressive process driven by a white Gaussian noise. Simulations are given for fractional Gaussian noises (fGn), autoregressive noises (AR(1)) and moving average noises (MA) in order to analyze the performance of the filtering algorithm compared to other approaches in the literature.
Keywords :
Kalman filter , Non-white noises , fractional Gaussian noises , optimal filtering
Journal title :
Systems and Control Letters
Serial Year :
2012
Journal title :
Systems and Control Letters
Record number :
1676394
Link To Document :
بازگشت