Title of article :
Data-driven asymptotic stabilization for discrete-time nonlinear systems
Author/Authors :
Li، نويسنده , , Yongqiang and Hou، نويسنده , , Zhongsheng، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2014
Abstract :
In this paper, we propose a data-driven feedback controller design method based on Lyapunov approach, which can guarantee the asymptotic stability of the closed-loop and enlarge the estimate of domain of attraction (DOA) for the closed-loop. First, sufficient conditions for a feedback controller asymptotically stabilizing the discrete-time nonlinear plant are proposed. That is, if a feedback controller belongs to an open set consisting of pairs of control input and state, whose elements can make the difference of a control Lyapunov function (CLF) to be negative-definite, then the controller asymptotically stabilizes the plant. Then, for a given CLF candidate, an algorithm, to estimate the open set only using data, is proposed. With the estimate, it is checked whether the candidate is or is not a CLF. If it is, a feedback controller is designed just using data, which satisfies sufficient conditions mentioned above. Finally, the estimate of DOA for closed-loop is enlarged by finding an appropriate CLF from a CLF candidate set based on data. Because the controller is designed directly from data, complexity in building the model and modeling error are avoided.
Keywords :
Stabilization , Nonlinear , Discrete-time , Data-driven control , domain of attraction , control Lyapunov function
Journal title :
Systems and Control Letters
Journal title :
Systems and Control Letters