Title of article :
Modeling of rapidly solidified aging process of Cu–Cr–Sn–Zn alloy by an artificial neural network
Author/Authors :
Su، نويسنده , , Juan-hua and Li، نويسنده , , Jun-De Dong، نويسنده , , Qi-ming and Liu، نويسنده , , Ping and Tian، نويسنده , , Bao-hong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
This paper uses an artificial neural network (ANN) and Levenberg–Marquardt training algorithm to model the non-linear relationship between parameters of rapidly solidified aging processes and mechanical and electrical properties of Cu–Cr–Sn–Zn alloy. The predicted values of the ANN are in accordance with the testing data. A basic repository on the domain knowledge of rapidly solidified age processes is established. Rapidly solidified aging processes can greatly enhance the hardness and electrical conductivity for Cu–Cr–Sn–Zn alloy. At 500 °C for 15 min aging the hardness and conductivity can reach 170 HV and 64% IACS respectively.
Keywords :
aging , Levenberg–Marquard algorithm , Artificial neural network , Rapid solidification , Cu–Cr–Sn–Zn alloy
Journal title :
Computational Materials Science
Journal title :
Computational Materials Science