Title of article :
Solution of the time-dependent, multi-particle Schrِdinger equation using Monte Carlo and numerical integration
Author/Authors :
Mazzone، نويسنده , , A.M. and Morandi، نويسنده , , V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
We study the solution of the multi-particle, time-dependent Schrödinger equation using quantum Monte Carlo methods and numerical integration. The Monte Carlo method is based on a mixed scheme, combining classical dynamics for the nuclei and quantum mechanics for the electrons. The numerical solution uses a discretization of the Schrödinger equation in real space and time. The two methods have been applied to light elements and silicon, respectively, and the dynamical events considered are the dissociation of H3 and the fragmentation of small silicon clusters. Benchmark calculations, performed for the ground state of H, He and small clusters of H and Si, are compared with Hartree–Fock calculations, also carried out in the course of this study. This comparison shows that both methods regain the exact stationary limit.
Keywords :
Time-dependent quantum mechanical methods , Monte Carlo and numerical integration , Hydrogen and silicon clusters fragmentation
Journal title :
Computational Materials Science
Journal title :
Computational Materials Science