Title of article :
Molecular dynamics simulations of oxygen ion diffusion and superionic conduction in ytterbia-stabilized zirconia
Author/Authors :
T. Pramananda Perumal، نويسنده , , T. and Sridhar، نويسنده , , V. and Murthy، نويسنده , , K.P.N. and Easwarakumar، نويسنده , , K.S. and Ramasamy، نويسنده , , S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
8
From page :
865
To page :
872
Abstract :
Superionic conduction of oxygen ions in 10 mol% ytterbia-stabilized zirconia (YbSZ) at different temperatures is studied employing molecular dynamics simulations. Eventhough discrete hopping of one or two oxygen ions starts at about 675 K, onset of superionic conduction occurs at about 1200 K when almost all the oxygen ions participate in the hopping process. The activation energy for oxygen ion diffusion is found to be 53.25 kJ mol−1. At this temperature and above, oxygen ionic conductivity exceeds 0.1 Ω−1 cm−1 thereby confirming superionic conduction in the YbSZ material. For 675 K < T < 1200 K, the material acts as a normal ionic conductor. The ionic conductivity values, obtained through our simulation compare well with experimental results. But activation energy for oxygen ion conduction, found from the Arrhenius plot of our simulation is 52.71 kJ mol−1 which is 35% less than experimental value. Radial distribution functions, g(r) show that there is no sharp structural phase transition and no oxygen ion sub-lattice melting in YbSZ material at superionic transition. However, the reduction in, broadening and shifting of the peaks in g(r) for all ionic pairs, at higher temperatures, indicate a volume expansion of the crystal.
Keywords :
Radial distribution function g(r) , Mean square displacement , Oxygen ion diffusion coefficient , ionic conductivity , Superionic transition , Activation energy , Arrhenius plot , Ytterbia-stabilized zirconia
Journal title :
Computational Materials Science
Serial Year :
2007
Journal title :
Computational Materials Science
Record number :
1682582
Link To Document :
بازگشت