Title of article :
Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling
Author/Authors :
Han، نويسنده , , Fei and Azdoud، نويسنده , , Yan and Lubineau، نويسنده , , Gilles، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics; the second one is based on hybrid local/non-local continuum mechanics. The key computational issues, including the peculiar homogenization technique and treatment of periodical boundary conditions in the non-local continuum model, are clarified. Both models are implemented through a three-dimensional geometric representation of the carbon nanotubes network, which has been detailed in Part I. Numerical results are shown and compared for both models in order to test convergence and sensitivity toward input parameters. It is found that both approaches provide similar results in terms of homogenized quantities but locally can lead to very different microscopic fields.
Keywords :
Composites , Polymer interphase region , Non-local continuum , Elasticity , peridynamics , Carbon nanotube
Journal title :
Computational Materials Science
Journal title :
Computational Materials Science