Title of article :
Chemical stability and surface stoichiometry of vanadium oxide phases studied by reactive molecular dynamics simulations
Author/Authors :
Jeon، نويسنده , , Byoungseon and Ko، نويسنده , , Changhyun and van Duin، نويسنده , , Adri C.T. and Ramanathan، نويسنده , , Shriram، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2012
Pages :
7
From page :
516
To page :
522
Abstract :
Compositional stability of various vanadium oxides and oxide growth on vanadium surfaces have been studied using reactive molecular dynamics simulation methods. Vanadium dioxide (VO2), sesquioxide (V2O3), pentoxide (V2O5), and hexavanadium tridecaoxide (V6O13) are studied in bulk crystalline and thin film structures, investigating charge distribution and pair distribution functions of particle interactions. The stability is estimated to be pentoxide, hexavanadium tridecaoxide, sesquioxide, and dioxide respectively in decreasing order in thin film structures. We then analyze oxide growth kinetics on vanadium (100) and (110) surfaces. The oxidation rate, stoichiometry, charge distribution, and the effect of surface orientation on kinetic phenomena are noted. In the early stages of surface oxidation of our simulation configurations, sesquioxide is found to be the dominant component. The modeling and simulation results are compared with experiments where available.
Keywords :
Reactive molecular dynamics , ReaxFF , Vanadium oxide , Compositional stability
Journal title :
Surface Science
Serial Year :
2012
Journal title :
Surface Science
Record number :
1692099
Link To Document :
بازگشت