Title of article :
Object tracking using SIFT features and mean shift
Author/Authors :
Zhou، نويسنده , , Huiyu and Yuan، نويسنده , , Yuan-Zhi Shi، نويسنده , , Chunmei، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
345
To page :
352
Abstract :
A scale invariant feature transform (SIFT) based mean shift algorithm is presented for object tracking in real scenarios. SIFT features are used to correspond the region of interests across frames. Meanwhile, mean shift is applied to conduct similarity search via color histograms. The probability distributions from these two measurements are evaluated in an expectation–maximization scheme so as to achieve maximum likelihood estimation of similar regions. This mutual support mechanism can lead to consistent tracking performance if one of the two measurements becomes unstable. Experimental work demonstrates that the proposed mean shift/SIFT strategy improves the tracking performance of the classical mean shift and SIFT tracking algorithms in complicated real scenarios.
Keywords :
object tracking , Color histogram , Mean shift , SIFT features , Expectation–maximization
Journal title :
Computer Vision and Image Understanding
Serial Year :
2009
Journal title :
Computer Vision and Image Understanding
Record number :
1695451
Link To Document :
بازگشت