Title of article :
Mean shift based gradient vector flow for image segmentation
Author/Authors :
Zhou، نويسنده , , Huiyu and Li، نويسنده , , Xuelong and Schaefer، نويسنده , , Gerald and Celebi، نويسنده , , M. Emre and Miller، نويسنده , , Paul، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
13
From page :
1004
To page :
1016
Abstract :
In recent years, gradient vector flow (GVF) based algorithms have been successfully used to segment a variety of 2-D and 3-D imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods may lead to biased segmentation results. In this paper, we propose MSGVF, a mean shift based GVF segmentation algorithm that can successfully locate the correct borders. MSGVF is developed so that when the contour reaches equilibrium, the various forces resulting from the different energy terms are balanced. In addition, the smoothness constraint of image pixels is kept so that over- or under-segmentation can be reduced. Experimental results on publicly accessible datasets of dermoscopic and optic disc images demonstrate that the proposed method effectively detects the borders of the objects of interest.
Keywords :
image segmentation , Mean shift , Contour , Energy function , gradient vector flow
Journal title :
Computer Vision and Image Understanding
Serial Year :
2013
Journal title :
Computer Vision and Image Understanding
Record number :
1697002
Link To Document :
بازگشت