Title of article :
An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation
Author/Authors :
Wang، نويسنده , , Zhimin and Song، نويسنده , , Qing and Soh، نويسنده , , Yeng Chai and Sim، نويسنده , , Kang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
1412
To page :
1420
Abstract :
This paper presents an adaptive spatial information-theoretic fuzzy clustering algorithm to improve the robustness of the conventional fuzzy c-means (FCM) clustering algorithms for image segmentation. This is achieved through the incorporation of information-theoretic framework into the FCM-type algorithms. By combining these two concepts and modifying the objective function of the FCM algorithm, we are able to solve the problems of sensitivity to noisy data and the lack of spatial information, and improve the image segmentation results. The experimental results have shown that this robust clustering algorithm is useful for MRI brain image segmentation and it yields better segmentation results when compared to the conventional FCM approach.
Keywords :
MRI brain image , Spatial Information , Information clustering , image segmentation , Fuzzy C-Means
Journal title :
Computer Vision and Image Understanding
Serial Year :
2013
Journal title :
Computer Vision and Image Understanding
Record number :
1697056
Link To Document :
بازگشت