Title of article :
Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density
Author/Authors :
Mullarney، نويسنده , , Matthew P. and Beach، نويسنده , , Lauren E. and Davé، نويسنده , , Rajesh N. and Langdon، نويسنده , , Beth A. and Polizzi، نويسنده , , Mark and Blackwood، نويسنده , , Daniel O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
397
To page :
402
Abstract :
A method for applying nano-sized silicon dioxide guest particles onto host pharmaceutical particles (a.k.a. “dry-coating” or “nanocoating”) has been developed using conventional pharmaceutical processing equipment. It has been demonstrated that under selected conditions, a comil can be used to induce sufficient shear to disperse silicon dioxide particles onto the surfaces of host particles such as active pharmaceutical ingredients (API) without significant host particle attrition. In accordance with previous studies on dry coating, the dispersed silicon dioxide adheres to the host particle surface through van der Waals attractions, and reduces bulk powder cohesion. In this work, laboratory and pilot scale comils were used to dry coat pharmaceutical API and excipient powders with 1% w/w silicon dioxide by passing them through the mill with an appropriate combination of screen and impeller. In general, the uncoated powders exhibited poor flow and/or low bulk density. After dry coating with a comil, the powders exhibited a considerable and in some cases outstanding improvement in flow performance and bulk density. This coating process was successful at both the laboratory and pilot scale with similar improvements in flow. The superior performance of the coated powders translated to subsequent formulated blends, demonstrating the benefit of using nanocoated powders over uncoated powders. This particle engineering work describes the first successful demonstration of using a traditional pharmaceutical unit operation that can be run continuously to produce uniform nanocoating and highlights the substantial improvements to powder flow properties when this approach is used.
Keywords :
Comil , Powder flow , Bulk density , Dry powder coating , Nanocoating , Shear cell
Journal title :
Powder Technology
Serial Year :
2011
Journal title :
Powder Technology
Record number :
1700689
Link To Document :
بازگشت