Title of article :
Analytical model to locate the fluidisation interface in a solid–gas vacuum fluidised bed
Author/Authors :
Kumar، نويسنده , , Apurv and Hodgson، نويسنده , , Peter and Fabijanic، نويسنده , , Daniel N. Gao، نويسنده , , Weimin and Das، نويسنده , , Subrat، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
12
From page :
463
To page :
474
Abstract :
Vacuum fluidised beds have a distinct advantage of being operated with reduced mass consumption of the fluidising media. However, a low quality of fluidisation reduces the opportunity to utilise the bubbling regime in vacuum fluidised beds. Fluidisation maps are often used to depict the interface between the quiescent, bubbling and slugging regimes inside a fluidised bed. Such maps have been obtained by visual observations of the fluidisation interface in transparent fluidised beds. For beds which are visually inaccessible fluidisation maps are difficult to obtain. The present work therefore attempts to model the interface travel in a vacuum fluidised bed. The pressure gradient due to the bed weight has been determined to be a main contributor for fluidisation/defluidisation under vacuum. A simple analytical model based on the pressure gradient (PG model) is developed to predict the interface location in a vacuum fluidised bed. For a segregated bed, the Gibilaro–Rowe (GR) model is modified and used to predict the jetsam layer growth along with the fluidisation interface. The predictions are compared with the experimental data for minimally and highly segregated particles and it is seen that for non-segregated powders the predictions are quite accurate. Lack of sufficient knowledge of bubble characteristics, however, impeded accurate prediction of the jetsam growth especially at high flow rates. However, an approximate complete fluidisation interface is successfully predicted using the GR–PG model.
Keywords :
Vacuum fluidisation , Fluidisation interface , Segregation
Journal title :
Powder Technology
Serial Year :
2014
Journal title :
Powder Technology
Record number :
1706308
Link To Document :
بازگشت