Title of article :
Thermal stability of the cubic phase in Ba0.5Sr0.5Co0.8Fe0.2O3 - δ (BSCF)1
Author/Authors :
Niedrig، نويسنده , , Christian and Taufall، نويسنده , , Simon and Burriel، نويسنده , , Mَnica and Menesklou، نويسنده , , Wolfgang and Wagner، نويسنده , , Stefan F. and Baumann، نويسنده , , Stefan and Ivers-Tiffée، نويسنده , , Ellen، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2011
Abstract :
Ba0.5Sr0.5Co0.8Fe0.2O3 - δ (BSCF) is a material with excellent oxygen ionic and electronic transport properties reported by many research groups. In its cubic phase, this mixed ionic-electronic conducting (MIEC) perovskite is a promising candidate for oxygen permeation membranes. For this application, its long-term stability under operating conditions (especially temperature and oxygen partial pressure) is of crucial importance.
esent work is focused on the thermal stability of the BSCF cubic phase in the targeted temperature range for applications (700…900 °C) in light of previous studies in literature reporting a reversible transition to a hexagonal phase somewhere below 900 °C.
s end, single phase cubic BSCF powders were annealed at different temperatures over varying periods of time. Phase composition was subsequently analysed by X-ray diffractometry (XRD) in order to determine both the temperature limit and the time-scale for the formation of the hexagonal phase. Additionally, the long-term behaviour of the electrical conductivity was examined on bulk samples at 700 °C, 800 °C and 900 °C over several hundreds of hours, showing a prolonged decrease at 800 °C. The decrease in electrical conductivity at this temperature was also examined on bulk samples with different grain sizes, showing a more pronounced decrease the smaller the average grain size.
tence of both phases (cubic and hexagonal) could also be shown for 700 °C, however with a different phase equilibrium than at 800 °C.
Keywords :
electrical conductivity , BSCF , Phase stability , Hexagonal phase
Journal title :
Solid State Ionics
Journal title :
Solid State Ionics